

Cluster On Anaerobic digestion environmental Services and nuTrients removAL

Thermal decomposition of the seaweed and an analysis of the formed products

6th COASTAL BIOGAS conference

Justas Eimontas
Lithuanian Energy Institute,
9 December, 2021

COASTAL BIOGAS

Presentation from COASTAL Biogas coordinator, Anne Roßmann, available at 1st Conference – Sweden | COASTAL Biogas

Feedstock collection and preparation

Thermal treatment in a laboratoryscale facility

Feedstock characterization and bio-char investigation

	Unwashed seaweed	Washed seaweed	Seaweed char
	Ultimate	analysis	
Carbon, % (d.b.)	34.58	46.93	60.10
Hydrogen. % (d.b.)	5.16	4.73	0.52
Oxygen, % (by diff.)	6.79	29.61	1.90
Nitrogen, % (d.b.)	3.65	4.13	2.66
Sulphur, % (d.b.)	3.54	5.13	2.79
Chlorine, % (d.b.)	0.43	0.05	0.08
	Proximate	analysis	
Moisture, % (a.r.)	57.32	62.56	-
Moisture, % (Uptake)	2.27	0.60	2.42
Volatiles, % (d.b.)	41.82	58.30	11.28
Fixed carbon, % (d.b.)	12.01	32.23	56.69
Ash, % (d.b.)	43.90	8.87	29.61
HHV (MJ/kg) (d.b.)	17.21	17.54	22.35
LHV (MJ/kg) (d.b.)	16.43	16.51	22.21
	Heavy metals and mi	nerals analysis (d.b.)	
As mg/kg	n.d. *	n.d. *	n.d. *
Cd mg/kg	n.d. *	n.d. *	n.d. *
Co mg/kg	n.d. *	n.d. *	n.d. *
Cr mg/kg	9.1	2.9	n.d. *
Cu mg/kg	8.1	8.2	41.4
Mn mg/kg	183.1	178.2	539.7
Ni mg/kg	7.41	2.5	n.d. *
Pb mg/kg	n.d. *	n.d. *	n.d. *
Sb mg/kg	n.d. *	n.d. *	n.d. *
V mg/kg	n.d. *	n.d. *	n.d. *
Zn mg/kg	40.9	29.4	116.8
P mg/kg	23373	11952	25750
K mg/kg	12737	10286	8841
Ca mg/kg	10163	6532	17364
Mg mg/kg	1451	1063	2533

Microthermal analysis

Gaseous products analysis

Sample	Pyrolysis	Gasification
Oil, wt%	17.22	0.1
Gasses, wt%	43.69	92.7
Biochar, wt%	39.09	7.2

Fund

Liquid products analysis

Toluene and benzene derivatives, such as ethenone, styrene, ethylbenzene

Sample	Pyrolysis	Gasification
Oil, wt%	17.22	0.1
Gasses, wt%	43.69	92.7
Biochar, wt%	39.09	7.2

Variously substituted phenolic compounds, styrene, pyridine, benzylnitrile, and some alcohols

Pyrolysis & gasification mass and energy balance

Theoretical evaluation of plasma assisted gasification

	Parameter	ameter After gasifier		After plasma reactor		
	Fuel load, kg/h		1	1		
	Plasma power, kW	-		2.30		
Air flow, m ³ /h		1.63		3.67		
	Produced gas yield,					
	m ³ /kg		1.57	2.11		
Feedstock	Produced gas LHV,					1
hoper	MJ/m ³	1.87		2.52		
	Produced liquids in gas					To vent
XXXXX	yield, g/m³	62.92		0.14		↑
W V V V V V	Produced liquids in gas					(D)
Do	LHV, MJ/m³		29.2	-		Exhauster
Primary air	Average produced gas composition, vol.% (dry)					
		Measured	Recalculated	Evaluated (based on	Recalculated	
Secondary air		(section 1.5)	without nitrogen	previous studies)	without nitrogen	į.
Tertiary air	CO ₂	9.3	44.9	7.1	25.6	er out
	CH₄	1.5	7.2	0.2	0.7	
Ash	H ₂	2.6	12.3	8.0	28.6	
container	СО	7.1	34.4	12.6	45.1	
	C_2H_2	0.0	0.0	0.0	0.0	
	C ₂ H ₆	0.3	1.2	0.0	0.0	
	C ₃ H ₈	0.0	0.0	0.0	0.0	
	N_2	79.2	-	72.1	-	

Striūgas N, Valinčius V, Pedišius N, Poškas R, Zakarauskas K. Investigation of sewage sludge treatment using air plasma assisted gasification. Waste Manag 2017. https://doi.org/10.1016/j.wasman.2017.03.024.

Theoretical evaluation of plasma assisted gasification

Conclusion

All investigated types of thermal treatment showed potential as seaweed utilization technologies obtaining additional energy carriers.

Thank you!

