

Cluster On Anaerobic digestion environmental Services and nuTrients removAL

Pre-treatment and Biogas Yield

Robert Aranowski
Final COASTAL Biogas Conference
9th December 2021

European Regional Development Fund

Methodology of Laboratory Measurements of Algae Biogas Potential

The procedure of determining the biogas potential

- Amount of biomass mixture used for test was approximately 100 g
- The volume of OxiTop reactors was 1.1 dm³
- The temperature of incubation was 37°C.
- The reactors were mixed with magnetic stirrers at a rotation speed of about 180 min⁻¹.
- The total solids of the biomass mixture at the start of experiment was approximately 8%
- The experiments duration no less then 30-45 days

Methodology of quasi-continuous digestion of algae biomass (10 L and 1000 L)

Control software of quasi-continuous laboratory digester

- Digester volume: 10 L and 1000 L
- Active digester volume: 7 L and 600 L
- HRT 21 days

- Digester load: 4 kg VS / (m³·d)
- Temperature: 37±0.1 ° X
- Total solids: ~5.0%

Sand Removal

Sand removal was carried out in a tank equipped in agitator, which was rotated at a speed of 180 rpm

Partners

Co-digestion of seaweed and cattle slurry

Marine biomass content in mixture – 25% Time of digestion – 30 days

Co-digestion of Seaweed and Cattle Slurry

Marine biomass content in mixture – 25% Time of digestion – 30 days

Mechanical Pre-treatment

Biomass: mixture of algae from Gdansk beach

Equipment: laboratory grinder

Power: 1200 W

Rotary speed: 2 000 min⁻¹,

Screen: 200 mesh

Time of disintegration: 15-180 s.

Change in Biomethane Yield for Mechanical Pre-treatment in Comparison to Cattle Slurry

Hydrothermal pre-treatment

System for thermal treatment of biomass (1) steam generator, (2) autoclave for hydrothermal lysis, (3) balance for measuring steam consumption, (4) control system; (5) steam connection.

Change in Biomethane Yield for Hydrothermal Pretreatment in Comparison to Untreated Seaweed

Acid Pre-treatment

- In the acidic pre-treatment the marine biomass was treated by sulphuric acid solution of pH 2 for 1, 6, 5 and 25 hours respectively
- After certain time the solution was neutralised by adding sodium carbonite to the neutral pH level

Change in Biomethane Yield for Acid Pre-treatment in Comparison to Untreated Seaweed

Hybrid Method, Acid Hydrolysis and Mechanical Disintegration

Change in Biomethane Yield for Hybrid Method, Acid Hydrolysis and Mechanical Disintegration

Change in Biomethane Yield Compered to Untreated Seaweed

Summary

Sand separation

- Sand separation is more effective in an acidic solution (pH 2)
- Mechanical grinding of marine biomass reduces the efficiency of sand separation in both acidic and neutral solutions

Pre-treatment

- Hydrothermal pre-treatment shows the highest biomethane yield increase compared to untreated seaweed and cattle slurry (50-83%).
- Mechanical pre-treatment results in the lowest increasing biogas and biomethane yield in the range from 4% to 24%.
- Biomethane yield for acid pre-treatment increase biomethane yield in comparison to untreated seaweed from 25% to 33%.
- Hybrid method give increase in biomethane yield from 36% to 64% with average value about 51%
- The results obtained in the quasi-continuous measurements of biogas potential are 20 to 40% higher than the values obtained in laboratory tests

Thank you!

The Coastal Biogas project was co-financed by the European Regional Development Fund under the Interreg South Baltic 2014/2020 programme (contract no. STHB.02.02.00-DE-0129/17-00), the Ministry of Education and Science Republic of Poland (contract no. 5013/SPB 2014-2020/2019/2) and Gdańsk University of Technology.

