Coastal Biogas Roskilde University, November 13, 2019

Digestate regulations and management in Denmark

Bruno Sander Nielsen

Danish Biogas Association

Members:

Biogas plants, turn-key and equipment suppliers, consultants, energy -, waste – and agricultural sectors, biomass suppliers, pretreatment plants, municipalities etcetera. (all stakeholders in the biogas sector)

Mission

Promote economic and environmental sustainable production and use of biogas and strengthening the political priority here of

- Lobby and communication
- Networking and knowledge sharing
- Co-operation with authorities
- International co-operation and eksport

Biogas production 1995-2018

Danish Biogas Association

2018 extrapolated

Relative biogas production

Danish biogas is agricultural based

- Agricultural centralized
- Agricultural farmscale
- Landfill
- Industrial
- Waste water treatment

Danish Biogas Association

2018 extrapolated

Biogas in Denmark

Livestock manure

Liquid slurry/Deep litter Organic catch crops

Organic residues

Agriculture, households, industry, servicesector

Better environment

Reduced GHG emissions

Improved fertilizer & recirculation

Recirculation; N, P, K and carbon Nutrient supply (organic)

Renewable energy

Stabilising energy system Supplementing wind power

Feedstock and gas origin

Digestate regulation since 80'ies

Regulated as livestock manure

- If waste is less than 25 per cent
- Nitrate directive (170 / 230 kg N per hectare)
- Fertilizer accounts on farm with minimum utilisation of N
- Until 2017:
 - N-regulation:10 per cent below economic optimum
 - Value of digestate
 - Higher yield through
 - improved utilisation
- From 2017
 - Also P regulation

Improved fertilizer and environment

- Anaerobic digestion of livestock manure in biogas plants
 - improves the value as fertilizer: 5-8 kg more N available per LU*
 - Reduces leaching of nitrate with 2 4 kg per LU*

* Livestock unit 1 LU: 100 kg of N

From: Aarhus University 2015

Double phosphorous challenge

The phosphorous challenge is double

- In the short term adaption to the new national P regulation
 - for farmers and biogas plants
- In the long term P is a highly critical ressource
 - recirculation and reuse is a prerequisite for the future food supply

Biogas plants is digesting manure and residues etcetera

- which makes it feasible to digest livestock manure and hence the possibility of solutions for P, climate change aquatic environment
- But this also increases the P challenge in livestock intensive areas

Are biogas plants part of the solution or part of the problem?

New phosphorous regulation New challenges for farmers also P leads to new challenges New challenges for farmers also P leads to new challenges

- - Especially in areas with reduced P access (ceiling)
- When different types of livestock manure is
 - Mixed in biogas plants
 - Which leads to shift in P ceiling for the farmer

Phosphorous cealing, kg P per hectare	General	Areas with stricter phosphorous cealings
Cattle, normal 170 kg N per hectare	30	30
Cattle, exeptions 230 kg N per hectare	35	35
Pigs, poultry, fur, horses, sheeps, goats	35	30
Waste	30	30
Chemical fertilizers	30	30

Livestock manure in Denmark

Manure	Liquid	Deep	Solid	Urine	Total	%
(1.000 tonnes)	slurry	litter	manure			
Cattle	17.895	2.922	209	236	21.262	50
Pigs	19.385	142	11	38	19.576	46
Poultry	5	238	64	0	307	1
Fur	1.270	183	0	0	1.453	3
Horses	0	217	0	0	217	1
Total	38.555	3.702	284	274	44.341	
Per cent	90	9	1	1		

Fostorregularing
- er biogasanlæg en lösning eller en udfordring?

- er biogasanlæg en lösning eller en udfordring?

Phosphorous in livestock manure

Phosphorous	Liquid	Deep	Solid	Urine	Total	%
Tonnes	slurry	litter	manure			
Cattle	13.008	3.791	327	36	17.162	39
Pigs	20.359	361	53	18	20.791	47
Poultry	8	2.345	470	0	2.823	6
Fur	2.634	572	0	0	3.206	7
Horses	0	360	0	0	360	1
Total	36.009	7.429	850	54	44.342	
Per cent	81	17	2	0		

Fosforregulering
- er biogasanlæg en lesning eller en udfordring?

2016/17

Regional distribution of P

Kg fosfor i husdyrgødning i alt

Phosphorous cealing, kg P per hectare	General	Areas with stricter phosphorous cealings
Cattle, normal 170 kg N per hectare	30	30
Cattle, exeptions 230 kg N per hectare	35	35
Pigs, poultry, fur, horses, sheeps, goats	35	30
Waste	30	30
Chemical fertilizers	30	30

Where are the biogas plants?

Origin of P in biogas plants

	Туре	Origin	Ton per yr. k	Kg P per ton	Total kg P
Livestock manure	Manure	Agriculture	5.328.936		5.027.306
Energy crops	Energy Crops	Agriculture	316.855		247.475
Animal biproducts	Industrial waste	Agriculture	207.301	3	621.902
Organic waste (enterprises)	Industrial waste	Industry	76.233	1	76.233
Sludge (animal origin)	Industrial waste	Agriculture	284.626	3	853.879
Sludge and waste water (pure)	Industrial waste	Industry	309.606	0,2	61.921
Source separated household waste	Households	Cities	86.604	0,6	51.962
Glycerine	Industrial waste	Industry	72.599	0	0
Other organic fertilizers	Industrial waste	Agriculture	156.337	1	156.337
Other organic fertilizers	Industrial waste	Industry	102.188	1	102.188
Total			6.990.503		7.199.203

2016/17

Origin of P in biogas plants

Phosphorous (tonnes)	Agriculture	Industry	Cities	Total	%
Livestock manure	5.027	0	0	5.027	69
Industrial waste	1.641	260	0	1.901	26
Energy crops	196	0	0	196	3
Crop residues	46	0	6	52	1
Household waste	0	0	52	52	1
Seavage sludge	0	0	36	36	1
Total	6.910	260	94	7.264	
Per cent	95	4	1		

2016/17

And more than 20,000 tonnes of P in chemical fertilizer to

Danish Biogas Association

To compare: 1,700 tonnes of P is used as start fertilizer for maize

How much of the land is utilised?

Separation may be necessary to change the N/P-ratio in digestate or export P out of local area

Danish Biogas Association

Nationally only 2/3 is utilised – but regionalle there are challenges

Economy for a crop producer

			How to as
DKK per hectare	Winter wheat	Spring	How to convince crop farmers about the
Without fibre fraction	wileat	barley	value in fibre fraction?
Purchase chemical fertilizer	1892	1448	mare fraction?
Application of chemical fertilizer	200	100	
Total costs	2.092	1.548	
With fibre fraction			
Purchase of chemical fertilizer	1457	969	
Application of chemical fertilizer	200	100	
Purchase, storage and transportation (fibres)	0	0	
Appllication of fiber fraction	150	150	
Increased soil disturbance	0	0	
Total costs	1.807	1.219	
Cost savings with fiber fractions	285	329	
Valure of phosphorous in years 2 and 3	288	334	
Value of nitrogen in subsequent crops	30	30	Fosforregulering - er biogasanlæg en lesning eller en udfordring?
Total value	603	693	

Quality standards for waste input

mg/kg	Threshold
Lead	120
Cadmium	1
Chrome	100
Copper	1.000
Nickel	30
Zinc	4.000
Mercury	1
PAH	3
NPE	20
LAS	1.300

Physical

Glass, metal, etcetera Plastic **Threshold**

0.5 % (DM) 0.15 % (DM) 1 cm²/% DM

Point of control: Entry of biogas plant

Conclusion

Biogas plants are the major tool

- in the circular economy to recirculate and reuse nutrients
- to optimize livestock manure (fertilizer, environment, climate)
- to meet challenges in N and P regulations

The digestate is regulated as livestock manure

- Until 2017 a way for farmers to get access to enough N
- Since 2017 new P challenges for farmers and biogas plants
- Quality requirements for waste input (chemical/physical)

In 2020 we digest 20 % of livestock manure in biogas plants which produce 20 PJ biogas which equals 20 % of Danish gas consumption

Thanks for your attention!

Questions?

Remember Økonomiseminaret December 3 in Vingsted

bsn@biogas.dk www.biogasbranchen.dk

