

Cluster On Anaerobic digestion environmental Services and nuTrients removAL

5th Project Conference

Pre-treatment Laboratory Results

Robert Aranowski 17th Jun 2021

Comparison of pre-treatment methods

	Pre-treatment methods										
Parameters	Milling	Chopping	Washing	Microwave	Hydrothermal	Extrusion	Steam explosion	Acidic	Alkaline	Enzymatic	Ensiling
Size reduction											
Surface to volume increase											
Energy consumption											
Salt removal											
Loss of readily digested substrates											
Sand removal											
Hazard risk											
Not suitable for some seaweeds											

European Regional Development Fund

Sand removal

Sand removal was carried out with a laboratory agitator, which was rotated at a speed of 180 rpm (photo on the left) as well as in a 600 L tank equipped with a mechanical agitator (photo on the right).

Methodology of laboratory measurements of algae biogas potential

The procedure of determining the biogas potential

- Amount of biomass mixture used for test was approximately 100 g
- The volume of OxiTop reactors was 1.1 dm³
- The temperature of incubation was 37°C.
- The reactors were mixed with magnetic stirrers at a rotation speed of about 180 min⁻¹.
- The total solids of the biomass mixture at the start of experiment was approximately 8%
- The experiments duration no less then 30-45 day

Methodology of laboratory measurements of algae biogas potential

The biogas cumulative volume production was calculated using following equation:

$$V_t = \sum_{i=1}^{N} \frac{P_i \cdot V}{R \cdot T}$$
, [Nm³]

The compound *x* volume production was calculated using below equation:

$$V_{tx} = c_{xi} \sum_{i=1}^{N} \frac{P_i \cdot V}{R \cdot T}$$
, [Nm³]

 V_t – Total biogas volume,

P - Pressure in the OxiTop bioreactor,

V - The volume of space above the liquid phase in the OxiTop bioreactor,

R - Gas constant,

T - Measurement temperature

N – number of biogas release cycles

 c_{xi} – concentration of x compound in i cycle

Co-digestion of seaweed and cattle slurry

Marine biomass content in mixture – 25% Time of digestion – 30 days

Mechanical pre-treatment

Biomass: mixture of algae from Gdansk

beach

Equipment: laboratory grinder

Power: 1200 W

Rotary speed: 24 000 min⁻¹,

Screen: 200 mesh

Time of disintegration: 15-180 s.

Change in biomethane yield for mechanical pretreatment in comparison to untreated seaweed

Hydrothermal pre-treatment

Type of pre-treament

System for thermal treatment of biomass (1) steam generator, (2) autoclave for hydrothermal lysis, (3) balance for measuring steam consumption, (4) control system; (5) steam connection.

Change in biomethane yield for hydrothermal pretreatment in comparison to untreated seaweed

Acid pre-treatment

- In the acidic pre-treatment the marine biomass was treated by sulphuric acid solution of pH 2 for 1, 6, 5 and 25 hours respectively
- After certain time the solution was neutralised by adding sodium carbonite to the neutral pH level

Change in biomethane yield for acid pretreatment in comparison to untreated seaweed

Biogas yield for different types of pretreatment

Biomethane yield for different types of pre-treatment

Change in biomethane yield compered to untreated seaweed

Summary

- Sand separation is more effective in an acidic solution (pH 2)
- Mechanical grinding of marine biomass reduces the efficiency of sand separation in both acidic and neutral solutions
- Hydrothermal pre-treatment shows the highest biomethane yield increase compared to untreated seaweed and pure cattle slurry (12-27%).
- Mechanical pre-treatment results in decrease biogas and biomethane yield in the range from -22% to -12%.
- Biomethane yield achieved for acid pre-treatment did not change significantly in comparison to untreated seaweed. The change is in the range from -3.7% to -0.2%.

Thank you!

The Coastal Biogas project was co-financed by the European Regional Development Fund under the Interreg South Baltic 2014/2020 programme (contract no. STHB.02.02.00-DE-0129/17-00), the Ministry of Education and Science Republic of Poland (contract no. 5013/SPB 2014-2020/2019/2) and Gdańsk University of Technology.

